Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Malar J ; 23(1): 69, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443984

RESUMO

BACKGROUND: There are several indications that pesticides used in agriculture contribute to the emergence and spread of resistance of mosquitoes to vector control insecticides. However, the impact of such an indirect selection pressure has rarely been quantified and the molecular mechanisms involved are still poorly characterized. In this context, experimental selection with different agrochemical mixtures was conducted in Anopheles gambiae. The multi-generational impact of agrochemicals on insecticide resistance was evaluated by phenotypic and molecular approaches. METHODS: Mosquito larvae were selected for 30 generations with three different agrochemical mixtures containing (i) insecticides, (ii) non-insecticides compounds, and (iii) both insecticide and non-insecticide compounds. Every five generations, the resistance of adults to deltamethrin and bendiocarb was monitored using bioassays. The frequencies of the kdr (L995F) and ace1 (G119S) target-site mutations were monitored every 10 generations. RNAseq was performed on all lines at generation 30 in order to identify gene transcription level variations and polymorphisms associated with each selection regime. RESULTS: Larval selection with agrochemical mixtures did not affect bendiocarb resistance and did not select for ace1 mutation. Contrastingly, an increased deltamethrin resistance was observed in the three selected lines. Such increased resistance was not majorly associated with the presence of kdr L995F mutation in selected lines. RNA-seq identified 63 candidate resistance genes over-transcribed in at least one selected line. These include genes coding for detoxification enzymes or cuticular proteins previously associated with insecticide resistance, and other genes potentially associated with chemical stress response. Combining an allele frequency filtering with a Bayesian FST-based genome scan allowed to identify genes under selection across multiple genomic loci, supporting a multigenic adaptive response to agrochemical mixtures. CONCLUSION: This study supports the role of agrochemical contaminants as a significant larval selection pressure favouring insecticide resistance in malaria vectors. Such selection pressures likely impact kdr mutations and detoxification enzymes, but also more generalist mechanisms such as cuticle resistance, which could potentially lead to cross-tolerance to unrelated insecticide compounds. Such indirect effect of global landscape pollution on mosquito resistance to public health insecticides deserves further attention since it can affect the nature and dynamics of resistance alleles circulating in malaria vectors and impact the efficacy of control vector strategies.


Assuntos
Anopheles , Poluentes Ambientais , Inseticidas , Malária , Nitrilas , Fenilcarbamatos , Piretrinas , Animais , Anopheles/genética , Agroquímicos , Inseticidas/farmacologia , Teorema de Bayes , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , Perfilação da Expressão Gênica
2.
Trials ; 25(1): 151, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419075

RESUMO

BACKGROUND: The massive scale-up of long-lasting insecticidal nets (LLIN) has led to a major reduction in malaria burden in many sub-Saharan African (SSA) countries. The World Health Organization (WHO) has recently issued a strong recommendation for the use of chlorfenapyr-pyrethroid LLINs compared to standard pyrethroid-only LLINs in areas of high insecticide resistance intensity. However, there is still a lack of conclusive evidence on the efficacy of piperonyl butoxide-pyrethroid (PBO-py) LLINs, especially in West Africa, where vector composition and resistance mechanisms may be different from vectors in East Africa. METHODS: This is a three-arm, superiority, triple-blinded, cluster randomised trial, with village as the unit of randomisation. This study conducted in Côte d'Ivoire will evaluate the efficacy on epidemiological and entomological outcomes of (1) the control arm: MAGNet® LN, which contains the pyrethroid, alpha-cypermethrin, (2) VEERALIN® LN, a net combining the synergist PBO and alpha-cypermethrin, and (3) Interceptor® G2 LN, which incorporates chlorfenapyr and alpha-cypermethrin, two adulticides with different mechanisms of action. A total of 33 villages with an average of 200 households per village will be identified, mapped, and randomised in a ratio of 1:1:1. Nets will be distributed at a central point following national guidelines with 1 net for every 2 people. The primary outcome of the trial will be incidence of malaria cases (confirmed by rapid diagnostic test (RDT)) in a cohort of 50 children aged 6 months to 10 years in each cluster, followed for 12 months (active case detection). Secondary outcomes are cross-sectional community prevalence of malaria infection (confirmed by RDT) in the study population at 6 and 12 months post-intervention (50 randomly selected persons per cluster), vector density, entomological inoculation rate (EIR), and phenotypic and genotypic insecticide resistance at baseline and 12 months post-intervention in 3 sentinel villages in each treatment arm. DISCUSSION: In addition to generating further evidence for next-generation LLINs, this study will also provide the first evidence for pyrethroid-PBO nets in a West African setting. This could further inform WHO recommendations on the pragmatic use of pyrethroid-PBO nets. TRIAL REGISTRATION: ClinicalTrials.gov NCT05796193. Registered on April 3, 2023.


Assuntos
Anopheles , Mosquiteiros Tratados com Inseticida , Inseticidas , Malária , Piretrinas , Criança , Animais , Humanos , Butóxido de Piperonila/farmacologia , Côte d'Ivoire/epidemiologia , Estudos Transversais , Controle de Mosquitos , Mosquitos Vetores , Piretrinas/farmacologia , Inseticidas/efeitos adversos , Resistência a Inseticidas , Malária/epidemiologia , Malária/prevenção & controle
3.
Malar J ; 22(1): 344, 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946208

RESUMO

BACKGROUND: Attractive targeted sugar bait (ATSB) is a novel approach to vector control, offering an alternative mode of insecticide delivery via the insect alimentary canal, with potential to deliver a variety of compounds new to medical entomology and malaria control. Its potential to control mosquitoes was recently demonstrated in major field trials in Africa. The pyrrole chlorfenapyr is an insecticide new to malaria vector control, and through its unique mode of action-disruption of ATP mediated energy transfer in mitochondria-it may have direct action on energy transfer in the flight muscle cells of mosquitoes. It may also have potential to disrupt mitochondrial function in malarial parasites co-existing within the infected mosquito. However, little is known about the impact of such compounds on vector competence in mosquitoes responsible for malaria transmission. METHODS: In this study, ATSBs containing chlorfenapyr insecticide and, as a positive control, the anti-malarial drugs artemether/lumefantrine (A/L) were compared for their effect on Plasmodium falciparum development in wild pyrethroid-resistant Anopheles gambiae sensu stricto (s.s.) and for their capacity to reduce vector competence. Female mosquitoes were exposed to ATSB containing either sublethal dose of chlorfenapyr (CFP: 0.025%) or concentrations of A/L ranging from 0.4/2.4 mg/ml to 2.4/14.4 mg/ml, either shortly before or after taking infective blood meals. The impact of their component compounds on the prevalence and intensity of P. falciparum infection were compared between treatments. RESULTS: Both the prevalence and intensity of infection were significantly reduced in mosquitoes exposed to either A/L or chlorfenapyr, compared to unexposed negative control mosquitoes. The A/L dose (2.4/14.4 mg/ml) totally erased P. falciparum parasites: 0% prevalence of infection in female mosquitoes exposed compared to 62% of infection in negative controls (df = 1, χ2 = 31.23 p < 0.001). The dose of chlorfenapyr (0.025%) that killed < 20% females in ATSB showed a reduction in oocyte density of 95% per midgut (0.18/3.43 per midgut). CONCLUSION: These results are evidence that chlorfenapyr, in addition to its direct killing effect on the vector, has the capacity to block Plasmodium transmission by interfering with oocyte development inside pyrethroid-resistant mosquitoes, and through this dual action may potentiate its impact under field conditions.


Assuntos
Anopheles , Antimaláricos , Inseticidas , Malária Falciparum , Malária , Piretrinas , Animais , Feminino , Humanos , Masculino , Inseticidas/farmacologia , Antimaláricos/farmacologia , Açúcares/farmacologia , Plasmodium falciparum , Controle de Mosquitos/métodos , Malária/prevenção & controle , Combinação Arteméter e Lumefantrina/farmacologia , Mosquitos Vetores , Artemeter , Piretrinas/farmacologia , Carboidratos , Malária Falciparum/prevenção & controle , Resistência a Inseticidas
4.
Biomed Res Int ; 2018: 2874160, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30402467

RESUMO

BACKGROUND: Insecticide resistance monitoring of the malaria vectors to different classes of insecticides is necessary for resistance management. Malaria vector control management approaches are essentially based on IRS and LLINs. However, insecticide resistance is caused by several sources of selection and in case the selection pressure is from agricultural practices, then measures need to be taken to avoid a failure of the control methods put in place. The current study was undertaken to monitor the susceptibility of vectors to different classes of insecticides in areas of varying agrochemical use patterns. METHODS: A survey to determine the agricultural chemical use pattern was undertaken in ten localities across Côte d'Ivoire. In addition, WHO susceptibility tests were carried out on adults Anopheles gambiae s.l. mosquitoes emerging from collected larvae from the sites surveyed. Four insecticides from each class of the four classes of insecticides were evaluated using the standard susceptibility test methods. Furthermore, the target site mutations involved in resistance mechanisms were identified following the Taqman assay protocols and mosquito species were identified using SINE-PCR. RESULTS: The mortalities of all the An. gambiae s.l populations were similar regardless of the pesticide use pattern. The vectors were resistant to DDT, deltamethrin, and bendiocarb in all localities. In contrast, mosquitoes showed high susceptibility to malathion. High frequency of the Kdr-West gene allele was observed (70-100%). A single Kdr-East mutation was identified in a mosquito that harboured both Ace-1 and Kdr-West genes. CONCLUSION: Cultivated marshlands representing good habitats for mosquito development may deeply contribute to the selection of resistance genes given the intensive use of agrochemical for crop protection. In view of these, special attention must be given to them to mitigate mosquito resistance to insecticides.


Assuntos
Agroquímicos/farmacologia , Anopheles/crescimento & desenvolvimento , Resistência a Medicamentos , Inseticidas/farmacologia , Animais , Anopheles/genética , Côte d'Ivoire
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...